Симметричные числа и сильная гипотеза Гольдбаха-Эйлера [Николай Иванович Конон] (fb2) читать постранично, страница - 2


 [Настройки текста]  [Cбросить фильтры]

δ; b = n + δ.

Ввиду того, что δ = 1, 2, 3.…. n, получаем количество пар a и b равное n. Так как указанные пары удовлетворяют свойствам 1) – 8), следует, что они симметричны, а это и доказывает лемму.

В результате, выше определено понятие симметричных пар и их шаг симметрии, которые представляют особый интерес исследования настоящей работы.


2. Исследование множеств симметричных пар

Рассмотрим множество C симметричных пар числа n, такое что,

C = {an,…ai,…a3, a2, a1, b1, b2, b3,… bi…bn }, (2.1)

где ai, bi. – симметричные пары, удовлетворяющие свойствам 1) – 8).

Для примера рассмотрим число 10. Тогда множество C симметричных пар числа 10 будет C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

Представим множество симметричных пар C в виде двух других множеств A и B, которые состоят из множества

A = {a1, a2, a3,…an } и множества B = {b1, b2, b3,…bn }. (2.2)

Очевидно C = A U B.

Для нашего примера эти множества будут

A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} и B = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.

Парные элементы приведенных множеств также удовлетворяют свойствам 1) – 8). Очевидно, что мощности обоих множеств |A| и |B| одинаковы и равны n.

Следует заметить, что эти множества взаимосвязаны, при чем, элементы в указанных множествах имеют взаимно однозначное соответствие одного множества к другому, и они в совокупности составляют симметричные пары (ai, bi).

Действительно, имеем a1 = n1, a2 = n2, a3 = n3, …ai = ni, …….. an-3 = 3, an-2 = 2, an-1 = 1, an = 0, и b1 = n + 1, b2 = n + 2, b3 = n + 3, …….. bi = n + i,……. bn-1 = n + n1, bn = n + n, то есть, такое взаимное соответствие можно выразить следующей зависимостью

ai = n i, bi = n + i, (2.3)

где i = 1,2,3, …….n.

Следовательно, для симметричных пар выражение (1.5) поэлементного соответствия будет выглядеть

ai + bi = 2n и biai= 2i, (2.4)

где i = 1,2,3, …….n.

Отсюда видим, что шаг симметрии равен номеру симметричной пары, т.е. δ=i.

Анализируя выражения (2.3) и (2.4), можно видеть, что множества A и B в свою очередь состоят из подмножеств нечетных и четных чисел, т.е. можно записать

A = nchA U chA;

B = nchB U chB, (2.5)

где nchA и chA – подмножества нечетных и четных чисел множества A;

nchB и chB – подмножества нечетных и четных чисел множества B.

Для указанного выше примера, имеем

nchA= {1, 3, 5, 7, 9} и chA= {0, 2, 4, 6, 8}.

nchB= {11, 13, 15, 17, 19} и chB= {12, 14, 16, 18, 20}.

Очевидно, и это не требует доказательств, что мощности подмножеств |nchA| и |chA| одинаковы, т.е. равны. Также можно сказать и о подмножествах |nchB| и |chB|, мощности которых также равны между собой.

Легко видеть, что мощности четных подмножеств |chA| и |chB| равны друг другу, и мощности для нечетных подмножеств |nchA| и |nchB| также равны друг другу, при этом само число n, являющееся центром симметрии, и ни в какие множества не входит.

Таким образом, можно записать следующие тождества:

|chA| = |chB|;

|nchA| = |nchB|;

|chA| = |nchA|;

|chB| = |nchB|; (2.6)

|chA| = |nchB|;

|chB| = |nchA|;

|nchA| = |chB|;

|nchB| = |chA|.

Отметим и то, что симметричная пара может состоять либо только из нечетных чисел, либо только из четных чисел, но ни как по-другому, т.е. пара (ai,bi) не может иметь одновременно разную чётность. Этот очевидный факт является очень важным и в дальнейшем будет использован. Чтобы увидеть правильность сказанного, следует внимательно посмотреть на выражения (2.4), так как в правых их частях стоят четные числа, и, следовательно, суммы левых частей должны быть также четными, что возможно только тогда, когда два слагаемых в левых частях будут одновременно нечетными или четными.

Докажем следующую небольшую лемму.

Лемма 2. Любое четное число может быть однозначно отнесено к натуральному числу вдвое меньшему данного четного числа.

Доказательство. Действительно, так как четное число n выражается формулой ch=2n, то разделив его на двойку, получим утверждаемое натуральное число, что и доказывает высказанное утверждение.

Рассмотренные выше соображения позволяют сформулировать следующее важное утверждение или теорему.

Теорема 1. Любое число n представимо суммой чисел любой симметричной пары, отнесенной к числу 2n, вдвое меньшему данному числу, т.е. равной удвоенному значению числа n, находящемуся на середине отрезка числовой оси [0;2n].

Доказательство. Действительно, согласно выражению (2.3) на числовой оси [0;2n] можно составить n симметричных пар (ai,bi) таких, что ai +