Великая Теорема Ферма [Саймон Сингх] (fb2) читать постранично, страница - 123


 [Настройки текста]  [Cбросить фильтры]

чисел современный облик.

(обратно)

11

Мы должны знать, мы будем знать (нем.)

(обратно)

12

Фундаментальные законы арифметики (нем.)

(обратно)

13

Главный труд (лат.)

(обратно)

14

Обе теоремы относятся к достаточно богатой математической теории (например, к аксиоматике Пеано теории целых чисел или системе аксиом Цермело–Френкеля). Следует иметь в виду, что здесь приводятся не точные формулировки теорем, а их популярная интерпретация.

(обратно)

15

А Роджер Фрай (как сказано в "Конкретной математике" Р. Грэхема, Д. Кнута и О. Паташника) затратив 110 часов работы суперкомпьютера Connection Machine, показал, что единственным решением для w < 1 000 000 является 95 8004 + 217 5194 + 414 5604 = 422 4814. — E.G.A.

(обратно)

16

Название арифметика вычетов, или арифметика остатков, происходит от того, что в ней рассматриваются не сами числа, а остатки от деления на какое-либо число, в данном случае на 5.

(обратно)

17

Строго говоря программа Ленглендса относится прежде всего к установлению связей между теорией представлений алгебраических групп, теорией модулярных форм и теорией Галуа глобальных полей.

(обратно)

18

Работы С. Ю. Аракелова не имеют отношения к программе Ленглендса. — Прим. ред

(обратно)

19

Здесь имеется в виду аналогия между теорией чисел и теорией функций, восходящая к Л. Кронекеру, и особенно развитая в работах Д. Гильберта. — Прим. ред.

(обратно)

20

Отметим, что Г. Фалтингс не занимался специально теоремой Ферма. О работе Г. Фалтингса и предшествующих исследованиях см. Паршин А. Н., Зархин Ю. Г. Проблемы конечности в диофантовой геометрии. – В кн.: Ленг С. Диофантова геометрия. – М.: Мир, 1986. С. 369–438. — Прим. ред.

(обратно)

21

Эти утверждения неверны. Для случая алгебраических поверхностей неравенство Мияоки было им же доказано (обобщая предшествующее неравенство Ф. А. Богомолова). То, что арифметический аналог неравенства Мияоки влечет теорему Ферма было показано А. Н. Паршиным. Более подробно см. Паршин А. Н. Дополнение редактора к книге «Алгебра и теория чисел (с приложениями)». – М.: Мир, 1987. С. 267–271. — Прим. ред.

(обратно)

22

Констанс Рид  в своей книге «Гильберт» (М., Наука, 1977) рассказывает об этом так: "Гильберт хотел привести своим слушателям характерные примеры теоретико-числовых проблем, представляющихся на первый взгляд совсем простыми, но решение которых оказывается невероятно трудным. Он упомянул в качестве такого типа проблем гипотезу Римана, теорему Ферма и проблему трансцендентности числа 2√2 (составляющую седьмую из его парижских проблем). Затем он продолжил, сказав, что недавно обнаружился большой прогресс, связанный с гипотезой Римана, и он очень надеется, что сам доживет до ее доказательства. Проблема Ферма стоит уже давно и явно требует совершенно новых методов для своего решения, — быть может, самому молодому слушателю в аудитории удастся дожить до ее решения. Что же касается числа 2√2, то ни один из присутствующих на лекции не доживет до доказательства его трансцендентности!

Две первые из упомянутых Гильбертом проблем не решены до сих пор. Однако десять лет спустя один молодой русский математик по фамилии Гельфонд установил трансцендентность числа 2√(–2). Основываясь на его работе, К.Л. Зигель вскоре доказал требуемую трансцендентность числа 2√2.

Зигель написал Гильберту об этом доказательстве. Он напомнил ему слова, сказанные на лекции в 1920 году, и подчеркнул, что важнейшим моментом здесь была работа Гельфонда. Гильберта часто критиковали за то, что «он ведет себя так, как будто всё сделано в Гёттингене». Теперь он с крайним восторгом ответил на письмо Зигеля, даже не упомянув о достижении молодого русского математика. Он хотел опубликовать только решение Зигеля. Но тот отказался, уверенный, что Гельфонд сам, в конце концов, решит и эту проблему тоже. Гильберт сразу потерял всякий интерес к этому делу". Цитата хоть и великовата, но показывает, что предсказания Гильберта не всегда бывали "исключительно точны". :) — E.G.A.

(обратно)

23

чересчур завышенная оценка; еще двадцать лет назад было известно, что показатель в теореме Шнирельмана не превышает 20. — E.G.A.

(обратно)

24

Имеется в виду древнегреческий миф о царе Эдипе. После того, как Эдип