Формы в мире почв [Игорь Николаевич Степанов] (fb2) читать постранично, страница - 5


 [Настройки текста]  [Cбросить фильтры]

геологии, биологии, почвоведении, физике сходные формы и явления описываются разными словами, так как каждая из этих наук выработала собственный понятийный аппарат. Поэтому специалисты одной области могут понять друг друга, но со специалистами-смежниками они общаются с большим трудом, как будто говорят на разных языках. Между ними возникает языковый барьер, увеличивающийся с ростом специализации наук. Создаваемые науками о Земле концепции формообразования несхожи лишь внешне — терминологически. «Многоязычие» мешает заметить те единые основания, общие принципы и идеи, которые заложены в каждой из концепций. Такие принципы и идеи могут быть обнаружены при абстрагировании форм с последующей аксиоматизацией полученных знаний.

Абстракция исходных положений каждой концепции о реальных структурах земной поверхности приведет к общим геометрическим структурам. Последние в виде законов отразят конкретные отношения. Так, реальные формы ареалов почвенного покрова (см. рис. 1): квадраты, прямоугольники, ромбы, косоугольники — в едином абстрактном образе можно представить в форме параллелограмма. Он и является тем фундаментальным «кирпичиком», «архетипом», который лежит в основании теорий и гипотез, объясняющих происхождение структур земной поверхности с различных точек зрений: с неотектонической, мерзлотной, эоловой, водной.

Обнаружение исходного, общего для всех почвенных структур образа, присутствующего часто в скрытом виде в природе, на картах и в научных концепциях, позволяет:

1) признать этот исходный образ постоянным, устойчивым свойством изучаемых геометрических структур земной поверхности, т. е. инвариантным;

2) отделить почвенное свойство от его формы, т. е. сделать главное в научном познании — перейти от конкретного it абстрактному. Например, для объектов, представленных на рис. 1, на данном этапе рассмотрения важно не то, каков вещественный состав почв (глинистые, песчаные, засоленные, мерзлотные), а то, какой геометрический рисунок они образуют;

3) признать фундаментальность «кирпичика», или «клетки», «ячеи» — элементарной единицы почвенного покрова. Для почв, показанных на рис. 1, А, Б, таким элементом является параллелограмм. Двигая этот элемент в пространстве, можно воссоздавать целостные образы — геосистемы. Согласно теории симметрии, число таких движений ограниченно. Выявив все возможные группы движений, тем самым устанавливают конкретные структуры почвенного покрова, какие только могут быть на Земле.

Реальные формы земной поверхности: эоловые, мерзлотные, тектонические — изучаются методами следующих наук: географии, почвоведения, геологии. Теоретизация знаний, базирующаяся на переходе от реального к абстрактному, требует иного метода познания, а именно аксиоматического. В почвоведении, например, его внедрением займется геометрическое почвоведение — наука о морфологии почв. Имея дело с абстракциями, оно нуждается в подтверждении их объективной реальности посредством построения системы аксиом.

Аксиоматический метод ведет к тому, что конкретные свойства и отношения форм земной поверхности: тектонические, мерзлотные, эоловые, казавшиеся совершенно различными, окажутся на абстрактном уровне рассмотрения структурами одних и тех же геометрических свойств и отношений. Так, несмотря на различие в генезисе форм, почвы, показанные на рис. 1, могут быть описаны присущей им одной группой симметрии.

Задача аксиоматики — свести все разнообразие почвенно-геологических реальных структур к их абстрактной основе — к математической структуре. Строение земной поверхности будет считаться познанным лишь тогда, когда будет найдено общее начало, всеобщая «идея» в виде математической структуры или закона.

Чтобы почвоведению построить собственную аксиоматику, необходимо обратиться за опытом к смежным наукам. В геометрии положение, принятое без логического доказательства в силу очевидности, называется аксиомой, или постулатом. Аксиома — истинное исходное положение теории. Аксиоматика — набор аксиом, из которых строятся логические представления геометрии. Аксиоматика может оказать услугу геометрическому почвоведению, которое в свои постулаты включает те же элементы, что и геометрия (точку, линию, плоскость), и некоторые ее аксиомы: 1) сочетания, 2) порядка, 3) движения, 4) непрерывности и 5) параллельности.

Геометрическое почвоведение тесно связано с системным подходом. Поэтому оно заимствует некоторые аксиоматические положения общей теории систем Ю. А. Урманцева (1974 и др.): 1) существование, 2) множество, 3) единое, 4) единство, 5) достаточность.

На языке почвоведения вышеперечисленные положения Ю. А. Урманцева (1–5) можно понимать так: 1 — фундаментальная характеристика почвенных форм; это состояние почвы как вида материи, которое рассматривается либо как пространство, либо как время, либо как движение, либо как комбинация --">